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Abstract

In this work we consider the Fuc̆ik problem for a family of weights depending on ε with
Dirichlet and Neumann boundary conditions. We study the homogenization of the spec-
trum. We also deal with the special case of periodic homogenization and we obtain the rate
of convergence of the first non-trivial curve of the spectrum.
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1 Introduction

Given a bounded domainΩ in RN , N ≥ 1 we study the asymptotic behavior as ε→ 0 of the spectrum
of the following asymmetric elliptic problem

−Δpuε = αεmε(u+ε )p−1 − βεnε(u−ε )p−1 in Ω (1.1)

either with homogeneous Dirichlet or Neumann boundary conditions.
Here, Δpu = div(|∇u|p−2∇u) is the p−Laplacian with 1 < p < ∞ and u± := max{±u, 0}. The

parameters αε and βε are real numbers and depending on ε > 0. We assume that the family of weight
functions mε and nε are positive and uniformly bounded away from zero.

For now, let us focus on problem (1.1) for fixed ε > 0 with positive weights m(x), n(x):

−Δpu = αm(x)(u+)p−1 − βn(x)(u−)p−1 in Ω (1.2)

with Dirichlet or Neumann boundary conditions.
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428 A. Salort

Consider the Fuc̆ik spectrum defined as the set

Σ(m, n) := {(α, β) ∈ R2 : (1.2) has a nontrivial solution}.
Let us observe that when r = n = m and λ = α = β, equation (1.2) becomes

−Δpu = λr|u|p−2u in Ω (1.3)

with Dirichlet or Neumann boundary conditions, which are the eigenvalue problems for the
p−Laplacian. These have been widely studied. See, for instance, [2, 10, 16, 13].

It follows immediately that Σ contains the lines λ1(m) × R and R × λ1(n). For this reason, we
denote by Σ∗ = Σ∗(m, n) the set Σ without these trivial lines. Observe that if (α, β) ∈ Σ∗ with α ≥ 0
and β ≥ 0 then λ1(m) < α and λ1(n) < β.

The study of problem (1.2) with Dirichlet boundary conditions have a long history that we briefly
describe below. The one-dimensional case with positive constant coefficients (i.e., m, n ∈ R+ and p =
2) was studied in the 1970s by Fuc̆ik [17] and Dancer [11] in connection with jumping nonlinearities.
Properties and descriptions of the first non-trivial curve on the spectrum of (1.2) on RN for the
general case (p � 2) without weights can be found in Cuesta, de Figueiredo and Gossez [10],
Dancer and Perera [12], Drábek and Robinson [15], Perera [27].

The case with positive weights m(x) and n(x) was recently studied, see for instance Rynne and
Walter [28], Arias and Campos [3], Drabek [14], Reichel and Walter [24]. For indefinite weights
m(x) and n(x) see Alif and Gossez[1], Leadi and Marcos [23].

The main problem one addresses is to obtain a description as accurate as possible of the set Σ∗.
In the one-dimensional case with p = 2 and without weights this description is obtained in a precise
manner: the spectrum is made of a sequence of hyperbolic-like curves in R+ × R+, see for instance
[18]. When m(x) and n(x) are non-constant weights, a characterization of the spectrum is obtained
in [1] in terms of the so-called zeroes-functions.

In RN with N > 1 and Dirichlet boundary conditions, only a full description of the first nontrivial
curve of Σ, which we will denote by C1 = C1(m, n), is known.

Assuming that the weight functions m, n are positive and uniformly bounded, it is proved in [4]
(see Theorem 33) that C1 can be characterized by

C1 = {(α(s), β(s)), s ∈ R+} (1.4)

where α(s) and β(s) are continuous functions defined by

α(s) = c(m, sn), β(s) = sα(s) (1.5)

and c(·, ·) is given by

c(m, n) = inf
γ∈Γ

max
u∈γ(I)

A(u)
B(u)

, (1.6)

where I := [−1,+1]. Here, the functionals A and B are given by

A(u) =
∫
Ω

|∇u|pdx, Bm,n =

∫
Ω

m(x)(u+)p + n(x)(u−)pdx, (1.7)

with
Γ = {γ ∈ C([−1,+1],W1,p

0 (Ω)) : γ(−1) ≥ 0 and γ(1) ≤ 0}.
Also in [4] (see Proposition 34) some important properties of the functions α(s) and β(s) are

proved. Namely, both α(s) and β(s) are continuous, α(s) is strictly decreasing and β(s) is strictly
increasing. One also has that α(s) → +∞ if s → 0 and β(s) → +∞ is s → +∞.
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Convergence rates in a weighted Fuc̆ik problem 429

Having defined these previous concepts, let us go back to problem (1.1). Homogenization of
the spectrum of elliptic operators has been studies extensively during recent years. The case of the
eigenvalues of the weighted p−Laplacian operator in periodic settings, i.e., −Δpuε = ρε|uε|p−2uε

with Dirichlet boundary conditions and ρε = ρ( x
ε
), ρ being a Q-periodic function with Q the

unit cube in RN , together with a family of more general problems was studied for instance in
[8],[9],[20],[22],[26] in the linear case (p = 2) and in [6],[7],[21] in the non-linear case (p � 2).

Up to our knowledge, no investigation has been made for the homogenization and rates of con-
vergence of the Fuc̆ik Spectrum. We are interested in studying the behavior as ε → 0 of problem
(1.1) when mε(x) and nε(x) are general functions depending on ε, and in the special case of rapidly
oscillating periodic functions, i.e., mε(x) = m(x/ε) and nε(x) = n(x/ε) for two Q−periodic functions
m, n uniformly bounded away from zero (see assumptions (2.8) below), Q being the unit cube of RN .

Our main aim is to study the limit as ε → 0 of the first nontrivial curve in the spectrum
Σε := Σ(mε, nε), say Cε

1 = {(αε(s), βε(s)), s ∈ R+}. We ask: does there exist a limit curve C1 =

{(α0(s), β0(s)), s ∈ R+} such that
Cε

1 → C1, as ε→ 0 ?

Can this limit curve be characterized as a curve of a limit problem? We will see that the answer is
positive. Therefore, a natural question arises: can the rate of convergence of Cε

1 be estimated, i.e.,
can we give an estimate for the remainders

|αε(s) − α0(s)| and |βε(s) − β0(s)|?
We give positive answers to these questions in the periodic setting. In fact, in Theorem 2.3 we obtain
the bounds

|αε(s) − α0(s)| ≤ c(1 + s)τ(s)ε, |βε(s) − β0(s)| ≤ cs(1 + s)τ(s)ε, s ∈ R+

where c is a fully determined constant which is independent of s and ε, and τ is an explicit function
depending only on s (see (2.14)). In particular, we get the following limits

|α∞ε − α∞0 | ≤ cε, |β∞ε − β∞0 | ≤ cε

where α∞ε = lim
s→∞αε(s), α∞0 = lim

s→∞α0(s), β∞ε = lim
s→∞ βε(s), β∞0 = lim

s→∞ β0(s) and c is independent of s

and ε.
This paper is organized as follows: In section 2 we focus our attention on the homogenization

of the Fuc̆ik spectrum with Dirichlet boundary conditions and in Section 3 we gather the results
necessary to prove them. In section 4 we discuss the homogenization of the Fuc̆ik spectrum in the
Neumann boundary conditions case and in Section 5 the results are proved.

2 The results

Let Ω ⊂ RN be a bounded domain and ε be a real positive number. We consider functions mε, nε

such that for constants m− ≤ m+, n− ≤ n+

0 < m− ≤ mε(x) ≤ m+ ≤ +∞ and 0 < n− ≤ nε(x) ≤ n+ ≤ +∞. (2.8)

Also, we assume that there exist functions m0(x) and n0(x) satisfying (2.8) such that, as ε→ 0,

mε(x) ⇀ m0(x) weakly* in L∞(Ω)
nε(x) ⇀ n0(x) weakly* in L∞(Ω).

(2.9)
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430 A. Salort

First, we address the problem with Dirichlet boundary conditions.
When ε→ 0 the natural limit problem for (1.1) is the following{ −Δpu0 = α0m0(x)(u+0 )p−1 − β0n0(x)(u−0 )p−1 in Ω

u0 = 0 on ∂Ω
(2.10)

where m0 and n0 are given in (2.9).
The main result is the following:

Theorem 2.1 Let mε, nε satisfy (2.8) and (2.9). Then the first non-trivial curve of problem (1.1)

Cε := C1(mε, nε) = {αε(s), βε(s), s ∈ R+}
converges to the first non-trivial curve of the limit problem (2.10)

C := C1(m0, n0) = {α0(s), β0(s), s ∈ R+}
as ε→ 0 in the sense that αε(s) → α0(s) and βε(s) → β0(s) ∀s ∈ R+.

Remark 2.1 Let us consider the weighted p−Laplacian problem{ −Δpu = λrε(x)|u|p−2u in Ω
u = 0 on ∂Ω

(2.11)

where rε is a function such that rε(x) ⇀ r(x) weakly* in L∞(Ω) as ε tends to zero. It is well-known
that the first eigenvalue of (2.11) converges to the first eigenvalue of the p−Laplacian equation with
weight r(x), see for instance [6]. The fact that the trivial lines of Σε are defined by λ1(mε) × R and
R × λ1(nε) allows us to ensure the convergence of the trivial lines to those of the limit problem.

Remark 2.2 Using the variational characterization of the second (variational) eigenvalue of [4],
Theorem 2.1 implies the convergence of the second (variational) eigenvalue of (2.11) to that of
the limit problem, thus obtaining a result recently proved in [21] for the case of the weighted
p−Laplacian. However, the results in [21] consider a more general class of quasilinear operators
and ε-dependence on the operator as well.

In the important case of periodic homogenization, i.e., when mε(x) = m(x/ε) and nε(x) = n(x/ε)
where m and n are Q−periodic functions, Q being the unit cube in RN , we have that m0 = m̄ and
n0 = n̄ are real numbers given by the averages of m and n over Q, respectively. Consequently, the
limit problem (2.10) becomes{ −Δpu0 = α0m̄(u+0 )p−1 − β0n̄(u−0 )p−1 in Ω

u0 = 0 on ∂Ω.
(2.12)

In this case, besides the convergence of the curves given in Theorem 2.1 and Remark 2.1, we also
obtain the convergence rates.

First, by using the variational characterization of the first eigenvalue of (2.11), we analyze the
trivial lines of Σε:

Theorem 2.2 Let mε, nε be weights given in terms of Q−periodic functions m, n in the form mε(x) =
m( x

ε
) and nε(x) = n( x

ε
) satisfying (2.8) and (2.9). Let us denote by λ1(mε), λ1(nε), λ1(m̄) and λ1(n̄)

the first eigenvalue of equation (2.11) with weights mε, nε, m̄ and n̄, respectively. Then

|λ1(mε) − λ1(m̄)| ≤ Cmε, |λ1(nε) − λ1(n̄)| ≤ Cnε,
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Convergence rates in a weighted Fuc̆ik problem 431

with Cm given by

Cm = pc1‖m − m̄‖L∞(RN )m+(m−)−
1
p−2μ

1
p+1
1 ,

where μ1 is the first eigenvalue of the Dirichlet p−Laplacian and c1 ≤ √
N/2 is the Poincaré’s

constant in L1(Q), Q being the unit cube in RN.

Remark 2.3 From Theorem 2.2 we obtain the convergence rates of the trivial lines of Σε: if pε ∈
λ1(mε) × R, we get

|pε − p0| ≤ Cmε,

where p0 belongs to the line λ1(m̄) × R. Analogously for pε ∈ R × λ1(nε).

Concerning to the first nontrivial curve of Σε we obtain:

Theorem 2.3 Under the same hypothesis of Theorem 2.1, if the weights mε and nε are given in
terms of Q−periodic functions m, n in the form mε(x) = m( x

ε
) and nε(x) = n( x

ε
), for each s ∈ R+, we

have the following estimates

|αε(s) − α0(s)| ≤ c(1 + s)τ(s)ε, |βε(s) − β0(s)| ≤ cs(1 + s)τ(s)ε (2.13)

where c is given explicitly by

pc1cp−1
p max{‖m − m̄‖L∞(RN ), ‖n − n̄‖L∞(RN )}(min{m−1

− , n−1
− }μ2)2

where c1 and cp are the Poincaré’s constant in L1(Q) and Lp(Ω), respectively, μ2 is the second
Dirichlet p−Laplacian eigenvalue in Ω and τ is defined by

τ(s) =
{ 1 s ≥ 1

s−2 s < 1.
(2.14)

Remark 2.4 According to Proposition 34 and Proposition 35 in [4], when p ≤ N the limits of
αε(s), α0(s) as s → ∞ and βε(s), β0(s) as s → 0 can be characterized in terms of the first eigenvalue
of weighted p−Laplacian problems. Moreover, lims→∞ αε(s) = λ1(mε) and lims→0 βε(s) = λ1(nε).
Similarly for α0 and β0. Consequently, by using the estimates obtained in Theorem 2.2, it is easy to
compute the convergence rates in the limit cases when the periodic case is considered, namely

lims→∞ |αε(s) − α0(s)| = |λ1(mε) − λ1(m̄)| ≤ Cmε,

lims→0 |βε(s) − β0(s)| = |λ1(nε) − λ1(n̄)| ≤ Cnε.

3 Proof of the Dirichlet results

We begin with the proof of Theorem 2.2. We will use a technical result proved in [21] that is
essential to estimate the rate of convergence of the eigenvalues, since it allows us to replace an
integral involving a rapidly oscillating function with one that involves its average in the unit cube.

Theorem 3.1 (Theorem 3.4 from [21]) Let Ω be a bounded domain in RN, N ≥ 1. Let g ∈ L∞(RN)
be a Q−periodic function, where Q = [0, 1]N is the unit cube in RN, such that 0 < g− ≤ g ≤ g+ < +∞
for some constants g±. Then∣∣∣∣∣

∫
Ω

(g(x/ε) − ḡ)|u|p
∣∣∣∣∣ ≤ pc1‖g − ḡ‖L∞(RN )ε‖u‖p−1

Lp(Ω)‖∇u‖Lp(Ω) (3.15)

for every u ∈ W1,p
0 (Ω) where 1 < p < +∞, Ω ⊂ RN is a bounded domain and ḡ :=

∫
Q g. Here, c1 is

the optimal constant in Poincaré’s inequality in L1(Q), which satisfies c1 ≤
√

N/2.
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432 A. Salort

Remark 3.1 Sometimes it can be useful to use an inequality involving the gradient only. By using
Poincaré’s inequality we can bound ‖u‖p−1

Lp(Ω) ≤ cp(Ω)p−1‖∇u‖p−1
Lp(Ω). Under the same assumptions of

Theorem 3.1, this allows us to rewrite inequality (3.15) as∣∣∣∣∣
∫
Ω

(g(x/ε) − ḡ)|u|p
∣∣∣∣∣ ≤ Cε‖∇u‖p

Lp(Ω),

where C = pc1cp−1
p ‖g − ḡ‖L∞(RN ).

Proof. [Proof of Theorem 2.2]. λ1(m̄) can be characterized variationally as

λ1(m̄) = inf
u∈W1,p

0 (Ω)

∫
Ω
|∇u|p∫

Ω
m̄|u|p =

∫
Ω
|∇u1|p∫

Ω
m̄|u1|p

+ o(1) (3.16)

for some u1 ∈ W1,p
0 (Ω). We can bound

λ1(mε) = inf
u∈W1,p

0 (Ω)

∫
Ω
|∇u|p∫

Ω
mε|u|p

≤
∫
Ω
|∇u1|p∫

Ω
m̄|u1|p

∫
Ω

m̄|u1|p∫
Ω

mε|u1|p
. (3.17)

By using Theorem 3.1, (2.8) and (3.16) it follows that

∫
Ω

m̄|u1|p∫
Ω

mε|u1|p
≤ 1 + cε

(∫
Ω
|up

1 |
) p−1

p
(∫
Ω
|∇u1|p

) 1
p∫

Ω
mε|u1|p

≤ 1 + cε
m̄
m−

(∫
Ω
|up

1 |
) p−1

p
(∫
Ω
|∇u1|p

) 1
p∫

Ω
m̄|u1|p

≤ 1 +Cε

⎛⎜⎜⎜⎜⎜⎝
∫
Ω
|∇u1|p∫

Ω
m̄|u1|p

⎞⎟⎟⎟⎟⎟⎠
1
p

≤ 1 +Cε(λ1(m̄) + o(1))
1
p ,

(3.18)

where C = pc1‖m − m̄‖L∞(RN )m+/m−.
By replacing (3.18) and (3.16) in (3.17) we get

λ1(mε) − λ1(m̄) ≤ Cελ1(m̄)
1
p+1. (3.19)

In a similar way, interchanging the roles of λ1(mε) and λ1(m̄) we obtain

λ1(m̄) − λ1(mε) ≤ Cελ1(mε)
1
p+1. (3.20)

By using (2.8) it follows immediately that

max{λ1(m̄), λ1(mε)} ≤ (m−)−1μ1, (3.21)

where μ1 is the first eigenvalue of the Dirichlet p−Laplacian. From equations (3.19), (3.20) and
(3.21) the result follows.

In the next Lemma we obtain upper bounds for the coordinates of the first curve of Σ∗(m, n).

Lemma 3.1 Let m, n satisfy (2.8) and let (α(s), β(s)) ∈ C1(m, n). Then for each s ∈ R+,

α(s) ≤ min{m−1
− , n−1

− }μ2τ(s), β(s) ≤ min{m−1
− , n−1

− }μ2sτ(s)
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Convergence rates in a weighted Fuc̆ik problem 433

with τ defined by

τ(s) =
{ 1 if s ≥ 1

s−1 if s ≤ 1
(3.22)

where m−, n− are given by (2.8) and μ2 is the second eigenvalue of the p−Laplacian equation in Ω
without weights and with Dirichlet boundary conditions.

Proof. Let s ∈ R+. When s ≥ 1 we can bound

λ1(m) ≤ α(s) ≤ α(1) = c(m, n).

Let λ2(m) be the second eigenvalue of the problem (1.3) with weight m(x). It satisfies α(1) ≤
min{λ2(m), λ2(n)}. By using assumptions (2.8) over m(x), we can bound λ2(m) by μ2m−1− , where
μ2 is the second eigenvalue of the p−Laplacian equation with Dirichlet boundary conditions on Ω.
Analogously for λ2(n). We get

α(s) ≤ α(1) ≤ min{m−1
− , n−1

− }μ2, s ≥ 1. (3.23)

Figure 1: The first curve of the spectrum.

When s ≤ 1 the following bound holds for the second coordinate of Cε

λ1(n) ≤ β(s) ≤ β(1). (3.24)

By multiplying (3.24) by s−1 and by using that β(s) = sα(s) we have

s−1λ1(n) ≤ α(s) ≤ s−1β(1).

Since α(1) = β(1), it follows that

α(s) ≤ s−1α(1) ≤ s−1 min{m−1
− , n−1

− }μ2, s ≤ 1. (3.25)

By using (3.23), (3.25) and the relation β(s) = sα(s) the conclusions of the lemma follow.

The following Proposition gives the monotonicity of c(·, ·):
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434 A. Salort

Proposition 3.1 [Proposition 23, [4]] If m ≤ m̃ and n ≤ ñ a.e., then

c(m̃, ñ) ≤ c(m, n),

where c(·, ·) is defined by (1.6).

In the next Lemma we obtain lower bounds for the coordinates of the first curve of Σ∗(m, n).

Lemma 3.2 Let m, n satisfy (2.8) and let (α(s), β(s)) ∈ C(m, n). Then for each s ∈ R+,

α(s) ≥ s−1Cω(s), β(s) ≥ Cω(s)

with ω defined by

ω(s) =
{ 1 if s ≥ 1

s if s ≤ 1
(3.26)

where C is a positive constant depending only on the bounds given in (2.8).

Proof. Let s ∈ R+. When s ≥ 1 we can bound β from below

β(s) ≥ β(1) = c(m, n), s ≥ 1.

Using the relation β(s) = sα(s) we obtain

α(s) ≥ s−1c(m, n), s ≥ 1.

Similarly, when s ≤ 1 we have

α(s) ≥ α(1) = c(m, n), s ≤ 1,

and again, by the relation between α(s) and β(s) we get

β(s) ≥ sc(m, n), s ≤ 1.

Using (2.8) and Proposition 3.1, we can bound c(m, n) from below

c(m, n) ≥ c(m+, n+)

and the result follows.

Now we are able to prove Theorem 2.3.

Proof. [Proof of Theorem 2.3] For each fixed value of ε > 0, by (2.8) together with the monotonic-
ity of c(·, ·) provided by Proposition 3.1, we can assert that there exist two curves C+1 (m+, n+) and
C−1 (m−, n−) that delimit from above and below the curve Cε

1(mε, nε). It follows that for each fixed
value of s, αε(s) and βε(s) are bounded.

Let (αε, βε) be a point belonging to the curve Cε
1(mε, nε) and let (α0, β0) be the point obtained

when ε→ 0. Let us see that it belongs to C1(m̄, n̄).
For a fixed value of ε > 0 and using (1.6), the inverse of c(mε, nε) can be written as

1
c(mε, nε)

= sup
γ∈Γ

inf
u∈γ[−1,+1]

Bmε,nε
(u) (3.27)

where
Γ = {γ ∈ C(I, H) : γ(−1) ≥ 0 and γ(1) ≤ 0}
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Convergence rates in a weighted Fuc̆ik problem 435

for I := [−1,+1] and
H = {u ∈ W1,p

0 (Ω) : A(u) = 1}
A and B being the functionals defined in (1.7).

By (1.5) and (3.27) we have the following characterization for the inverse of αε(s)

1
αε(s)

=
1

c(mε, snε)
= sup

γ∈Γ
inf

u∈γ(I)
Bmε,snε

(u). (3.28)

Similarly, we can consider an equation analog to (3.28) for the representation of the inverse of α0(s).
Let δ > 0 and γ1(δ) ∈ Γ such that

1
α0(s)

= inf
u∈γ1(I)

Bm̄,sn̄(u) + O(δ). (3.29)

In order to find a bound for aε we use γ1 ∈ Γ1, which is admissible in its variational characterization,

1
αε(s)

≥ inf
u∈γ1(I)

Bmε,snε
(u). (3.30)

Since u ∈ W1,p
0 (Ω), it follows that (u+)p and (u−)p belong to W1,1

0 (Ω). This allows us to estimate
the error by replacing the oscillating weights by their averages by using Remark 3.1. For each fixed
function u ∈ γ1(I) we bound

Bmε,snε
(u) ≥ Bm̄,sn̄(u) − cmε‖∇u+‖p

Lp(Ω) − cnεs‖∇u−‖p
Lp(Ω) (3.31)

where cm and cm are the constants given in Remark 3.1. Since u ∈ H we have

‖∇u+‖p
Lp(Ω) ≤ 1, ‖∇u−‖p

Lp(Ω) ≤ 1. (3.32)

So, from (3.32) and (3.31), taking c = max{cm, cn} we get

Bmε,snε
(u) ≥ Bm̄,sn̄(u) − cε(1 + s). (3.33)

Taking infimum over the functions u in γ1(I) together with (3.29) and (3.30) we obtain

α−1
ε (s) − α−1

0 (s) ≥ −cε(1 + s) + O(δ).

Letting δ→ 0 we get
α−1
ε (s) − α−1

0 (s) ≥ −cε(1 + s). (3.34)

In a similar way, interchanging the roles of αε and α0 we obtain the inequality

α−1
ε (s) − α−1

0 (s) ≤ cε(1 + s). (3.35)

From equations (3.34) and (3.35) it follows that

|αε(s) − α0(s)| ≤ cε(1 + s)αε(s)α0(s). (3.36)

By using Lemma 3.1 we can bound (3.36) by

|αε(s) − α0(s)| ≤ c(min{m−1
− , n−1

− }μ2)2(1 + s)τ(s)2ε

where τ(s) is given by (3.22) and μ2 is the second eigenvalue of the Dirichlet p−Laplacian.
From the convergence of αε together with (1.5) there follow the convergence of βε and of the

whole curve.

The proof of Theorem 2.1, where general weights are considered, is analogous to that of Theo-
rem 2.3 but we need a result similar to Theorem 3.1 that works without assuming periodicity. It is
found in the following theorem.
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Theorem 3.2 Let Ω ⊂ RN be a bounded domain. Let gε be a function such that 0 < g− ≤ gε ≤ g+ <
+∞ for g± constants and gε ⇀ g weakly* in L∞(Ω). Then for every u ∈ W1,p(Ω),

lim
ε→0

∫
Ω

(gε − g)|u|p = 0

where 1 < p < +∞.

Proof. The weak* convergence of gε in L∞(Ω) says that
∫
Ω

gεϕ → ∫
Ω

gϕ for all ϕ ∈ L1(Ω). In
particular, u ∈ W1,p(Ω) implies that |u|p ∈ W1,1(Ω), whence |u|p ∈ L1(Ω) and the result is proved.

Proof. [Proof of Theorem 2.1] The argument follows exactly as in the proof of Theorem 2.3 using
Theorem 3.2 instead of Theorem 3.1.

4 Neumann boundary conditions

Now we focus our attention on the Neumann boundary conditions case. Let Ω be a bounded domain
in RN , N ≥ 1 and let m, n be two weights satisfying (2.8). We consider the following asymmetric
elliptic problem { −Δpu = αm(x)(u+)p−1 − βn(x)(u−)p−1 in Ω

∂u
∂η
= 0 on ∂Ω

(4.37)

where η denotes the exterior unit normal.
Let r(x) be a weight satisfying (2.8). Now, 0 is a principal eigenvalue of

{ −Δpu = λr(x)|u|p−2u in Ω
∂u
∂ν
= 0 on ∂Ω

(4.38)

with constants as eigenfunctions. Moreover, the positivity of r guarantee that 0 is the unique nonneg-
ative principal eigenvalue, see [19]. Consequently, the Fuc̆ik spectrum Σ = Σ(m, n) clearly contains
the lines {0} × R and R × {0}. We denote by Σ∗ = Σ∗(m, n) the set Σ(m, n) without these two lines.

In this case, when N > 1 only a full description of the first nontrivial curve of Σ, which we will
denote by C1 = C1(m, n) is known. Moreover, in [5] (see Theorem 6.1) a characterization similar to
the Dirichlet case is given:

C1 = {(α(s), β(s)), s ∈ R+} (4.39)

where α(s) and β(s) are continuous functions defined by α(s) = c(m, sn), β(s) = sα(s) and c(·, ·) is
given by

c(m, n) = inf
γ∈Γ

max
u∈γ(J)

A(u)
B(u)

(4.40)

with J := [0, 1], the functionals A and B given by (1.7), and

Γ = {γ ∈ C(J,W1,p(Ω)) : γ(0) ≥ 0 and γ(1) ≤ 0}.

Let mε and nε be two functions that satisfy (2.8) and (2.9). We consider the following problem
depending on ε > 0

{ −Δpuε = αεmε(u+ε )p−1 − βεnε(u−ε )p−1 in Ω
∂uε

∂ν
= 0 on ∂Ω.

(4.41)
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As we did with the Dirichlet equation (1.1), we want to study the behavior of the first non-trivial
curve in the spectrum of (4.41) as ε → 0. When ε tends to zero in (4.41), according to (2.9) we
obtain the following limit equation

{ −Δpu0 = α0m0(x)(u+0 )p−1 − β0n0(x)(u−0 )p−1 in Ω
∂u0
∂ν
= 0 on ∂Ω.

(4.42)

Analogously to Theorem 2.1, we obtain the following result of convergence:

Theorem 4.1 Let mε, nε satisfy (2.8), and (2.9). Then the first non-trivial curve of problem (4.41)

Cε
1 := C1(mε, nε) = {αε(s), βε(s), s ∈ R+}

converges to the first non-trivial curve of the limit problem (4.42)

C1 := C1(m0, n0) = {α0(s), β0(s), s ∈ R+}
as ε→ 0 in the sense that αε(s) → α0(s), βε(s) → β0(s) ∀s ∈ R+.

In the case of periodic homogenization, i.e., mε(x) = m(x/ε) and nε(x) = n(x/ε) with m and n
Q−periodic functions, Q being the unit cube in RN , the limit functions m0, n0 given in (2.9) are equal
to the averages of m and n over Q, respectively, i.e., m0 = m̄ and n0 = n̄. Now, as in the Dirichlet
case, in addition to the convergence of the first non-trivial curve, we obtain the convergence rates:

Theorem 4.2 Let Ω ⊂ RN, N > 1 be a bounded domain with C1 boundary. Under the same
hypothesis of Theorem 4.1, if the weights mε and nε are given in terms of Q−periodic functions m, n
in the form mε(x) = m( x

ε
) and nε(x) = n( x

ε
), for each s ∈ R+ we have the following estimate

|αε(s) − α0(s)| ≤ c(1 + s)τ(s)ε, |βε(s) − β0(s)| ≤ cs(1 + s)τ(s)ε

where c = c(Ω, p,m, n) is a constant independent of ε and s, and τ is given by (2.14).

Remark 4.1 When mε = nε in (1.1), equation (1.6) gives a variational characterization of the second
eigenvalue of the weighted p−Laplacian (see [4]), thus Theorems 4.2 and 2.3 give alternative proofs
of the homogenization rates of the second eigenvalue of the p−Laplacian with a periodic weight
both with Neumann as Dirichlet boundary conditions. For a proof of the homogenization rates of
the full spectrum we refer the reader to [20, 21].

To prove Theorem 4.2 the arguments used in the Dirichlet case fail. This is due to the fact that
now the function space is W1,p(Ω) but Theorem 3.1 holds for functions in W1,p

0 (Ω) only. The fact of
enlarge the set of test functions is reflected in the need for more regularity of the domain Ω. We will
prove the following result which works with functions belonging to W1,p(Ω).

Theorem 4.3 Let Ω ⊂ RN be a bounded domain with C1 boundary and denote by Q the unit cube
in RN. Let g be a Q−periodic bounded function. Then, for every u ∈ W1,p(Ω) there exists a constant
c independent of ε such that ∣∣∣∣∣

∫
Ω

(g(
x
ε

) − ḡ)u
∣∣∣∣∣ ≤ cε‖u‖W1,p(Ω)

where ḡ =
∫

Q g and 1 ≤ p < +∞.

Remark 4.2 Unlike in Theorem 3.1, we are not able to compute explicitly the constant c in Theorem
4.3.
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5 Proof of the Neumann results

We begin this section by proving some auxiliary results that are essential to prove Theorem 4.3. The
next lemma is a generalization, for p ≥ 2, of Oleinik’s Lemma [26].

Lemma 5.1 Let Ω ⊂ RN be a bounded domain with C1 boundary and, for δ > 0, let Gδ be a tubular
neighborhood of ∂Ω, i.e. Gδ = {x ∈ Ω : dist(x, ∂Ω) < δ}. Then there exists δ0 > 0 such that for every
δ ∈ (0, δ0) and every v ∈ W1,p(Ω) we have

‖v‖Lp(Gδ) ≤ cδ
1
p ‖v‖W1,p(Ω),

where c is a constant independent of δ and v.

Proof. Let Gδ = {x ∈ Ω : dist(x, ∂Ω) < δ}, it follows that S δ = ∂Gδ are uniformly smooth surfaces.
By the Sobolev Trace Theorem we have

‖v‖p
Lp(S δ) =

∫
S δ

|v|pdS ≤ c‖v‖p
W1,p(Ωδ) ≤ c‖v‖p

W1,p(Ω) δ ∈ [0, δ0],

where c is a constant independent of δ. Integrating this inequality with respect to δ we get

‖v‖p
Lp(Gδ) =

∫ δ

0

( ∫
S τ

|v|pdS
)
dτ ≤ cδ‖v‖p

W1,p(Ω)

and the Lemma is proved.

The next Theorem is essential to estimate the rate of convergence of the eigenvalues since it
allows us to replace an integral involving a rapidly oscillating function with one that involves its
average in the unit cube. First, we need an easy Lemma that computes the Poincaré constant on
the cube of side ε in terms of the Poincaré constant of the unit cube. Although this result is well
known and its proof follows directly by a change of variables, we choose to include it for the sake
of completeness.

Lemma 5.2 Let Q be the unit cube in RN and let cp be the Poincaré constant in the unit cube in Lp,
i.e.

‖u − (u)Q‖Lp(Q) ≤ cp‖∇u‖Lp(Q), for every u ∈ W1,p(Q),

where (u)Q is the average of u in Q. Then, for every u ∈ W1,p(Qε) we have

‖u − (u)Qε
‖Lp(Qε) ≤ cpε‖∇u‖Lp(Qε),

where Qε = εQ.

Proof. Let u ∈ W1,p(Qε). We can assume that (u)Qε
= 0. Now, if we denote uε(y) = u(εy), we have

that uε ∈ W1,p(Q) and by the change of variables formula, we get∫
Qε

|u|p =
∫

Q
|uε|pεn ≤ cp

pε
n
∫

Q
|∇uε|p = cp

pε
p
∫

Qε

|∇u|p.

The proof is now complete.
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Theorem 5.1 Let Ω ⊂ RN be a bounded domain with C1 boundary and denote by Q the unit cube
in RN. Let g be a Q-periodic bounded function such that (g)Q = 0. Then the inequality∣∣∣∣∣

∫
Ω

g
( x
ε

)
uv

∣∣∣∣∣ ≤ cε‖u‖W1,p(Ω)‖v‖W1,p′ (Ω)

holds for every u ∈ W1,p(Ω) and v ∈ W1,p′(Ω), where c is a constant independent of ε, u, v and p, p′
are conjugate exponents.

Proof. Denote by Iε the set of all z ∈ ZN such that Qz,ε := ε(z + Q) ⊂ Ω. Set Ω1 =
⋃

z∈Iε Qz,ε and
G = Ω \ Ω̄1. Let us consider the functions v̄ and ū given by the formulas

v̄(x) =
1
εn

∫
Qz,ε

v(x)dx, ū(x) =
1
εn

∫
Qz,ε

u(x)dx

for x ∈ Qz,ε. Then we have∫
Ω

gεuv =
∫

G gεuv +
∫
Ω1

gεuv

=
∫

G gεuv +
∫
Ω1

gε(u − ū)v +
∫
Ω1

gεū(v − v̄) +
∫
Ω1

gεv̄ū.
(5.43)

The set G is a δ-neighborhood of ∂Ω with δ = cε for some constant c, and therefore according to
Lemma 5.1 we have

‖u‖Lp(G) ≤ cε
1
p ‖u‖W1,p(Ω)‖v‖Lp′ (G) ≤ cε

1
p′ ‖v‖W1,p′ (Ω). (5.44)

Since g is bounded, we get∫
G

gεuv ≤ c‖u‖Lp(G)‖v‖Lp′ (G) ≤ cε‖u‖W1,p(Ω)‖v‖W1,p′ (Ω). (5.45)

Now, by Lema 5.2 we get

‖u − ū‖Lp(Ω1) =

⎛⎜⎜⎜⎜⎜⎜⎝∑
z∈Iε

∫
Qz,ε

|u − ū|pdx

⎞⎟⎟⎟⎟⎟⎟⎠
1
p

≤ cpε

⎛⎜⎜⎜⎜⎜⎜⎝∑
z∈Iz,ε

∫
Qz,ε

|∇u(x)|pdx

⎞⎟⎟⎟⎟⎟⎟⎠
1
p

= cpε‖∇u‖Lp(Ω1).

(5.46)

Analogously
‖v − v̄‖Lp′ (Ω1) ≤ cp′ε‖∇v‖Lp′ (Ω1). (5.47)

By the definition of ū(x) we get

‖ū‖p
Lp(Ω1) =

∑
z∈Iε

∫
Qz,ε

|ū|p =
∑
z∈Iε

εn
(
ε−n

∫
Qz,ε

u
)p

≤ εn−np
∑
z∈Iε

|Qz,ε|p/p′
∫

Qz,ε

|u|p

= εn−np+np/p′
∑
z∈Iε

∫
Qz,ε

|u|p

=

∫
Ω1

|u|p = ‖u‖p
Lp(Ω1).

(5.48)
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Finally, since (g)Q1 = 0 and since g is Q−periodic, we get∫
Ω1

gεūv̄ =
∑
z∈Iε

ūv̄
∫

Qz,ε

gε = 0. (5.49)

Now, combining (5.45), (5.46), (5.47), (5.48) and (5.49) we can bound (5.43) by∫
Ω

gεuv ≤ Cε‖u‖W1,p(Ω)‖v‖W1,p′ (Ω).

This finishes the proof.

Proof. [Proof of Theorem 4.3] The result follows applying Theorem 5.1 to g̃ε = gε − ḡ and taking
v ≡ 1.

Remark 5.1 Let us observe that u ∈ W1,p(Ω) is a solution of equation (4.37) if and only if u is a
solution of equation

−Δpu + m(u+)p−1 + n(u−)p−1 = α̃m(u+)p−1 − β̃n(u−)p−1 in Ω (5.50)

with Neumann boundary conditions, where α̃ = α − 1 and β̃ = β + 1. The main advantage of
considering equations (5.50) instead of (4.37) is the fact that the functional A(u) defined in (1.7)
becomes in

Am,n(u) =
∫
Ω

|∇u|p + m(u+)p + n(u−)pdx, (5.51)

which involves both ∇u and the function u.

Proof. [Proof of Theorem 4.2] The proof is similar to that of Theorem 2.3 for the Dirichlet case.
According to Remark 5.1 we consider equation (5.50). Let (α̃ε, β̃ε) be a point belonging to the curve
Cε

1(mε, nε) and let (α̃0, β̃0) be the point obtained when ε → 0. It follows that (α̃0, β̃0) belongs to the
spectrum of the limit equation. Let us see that it belongs to C(m̄, n̄). The main difference is that in
the characterization (4.40) of c(mε, nε), now we are considering

Γ = {γ ∈ C(J,W1,p(Ω)) : γ(0) ≥ 0 and γ(1) ≤ 0}
with J := [0, 1]. For a fixed value of ε > 0 we write

c(mε, nε) = inf
γ∈Γ

sup
u∈γ

Amε,nε
(u)

Bmε,nε
(u)

. (5.52)

By (1.5) and (5.52) we have the following characterization of α̃ε(s)

α̃ε(s) = c(mε, snε) = inf
γ∈Γ

sup
u∈γ

Amε,snε
(u)

Bmε,snε
(u)

. (5.53)

Similarly, we can consider an equation analog to (5.53) for the representation of α̃0(s). Let δ > 0
and γ1 = γ1(δ) ∈ Γ such that

α̃0(s) = sup
u∈γ1

Am̄,sn̄(u)
Bm̄,sn̄(u)

+ O(δ). (5.54)

In order to find a bound for ãε we use γ1 ∈ Γ, which is admissible in its variational characterization,

α̃ε(s) ≤ sup
u∈γ1

Amε,snε
(u)

Bm̄,sn̄(u)
Bm̄,sn̄(u)

Bmε,snε
(u)

. (5.55)
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To bound α̃ε we look for bounds of the two quotients in (5.55). Since u ∈ W1,p(Ω), by Theorem 4.3
we obtain that

Amε,snε
(u)

Bm̄,sn̄(u)
≤ Am̄,sn̄(u)

Bm̄,sn̄(u)
+

cε‖|u+|p‖W1,1(Ω) + cε‖|u−|p‖W1,1(Ω)

Bm̄,sn̄(u)
.

For every function u ∈ γ1 we have that

Am̄,sn̄(u)
Bm̄,sn̄(u)

≤ sup
u∈γ1

Am̄,sn̄(u)
Bm̄,sn̄(u)

= α̃0(s) + O(δ). (5.56)

By using Young’s inequality, for each v ∈ W1,p(Ω)

‖|v|p‖W1,1(Ω) = ‖|v|p‖L1(Ω) + p‖|v|p−1∇v‖L1(Ω)

= ‖v‖p
Lp(Ω) + p‖|v|p−1∇v‖L1(Ω)

≤ p‖v‖p
Lp(Ω) + ‖∇v‖p

Lp(Ω).

(5.57)

From (5.57) it follows that

‖|u+|p‖W1,1(Ω)

Bm̄,sn̄(u)
≤

p‖u+‖p
Lp(Ω) + ‖∇u+‖p

Lp(Ω)

Bm̄,sn̄(u)

≤ c
Am̄,sn̄(u)
Bsm̄,sn̄(u)

≤ c sup
u∈γ1

Am̄,sn̄(u)
Bm̄,sn̄(u)

= c(α̃0(s) + O(δ)),

(5.58)

and similarly
‖|u−|p‖W1,1(Ω)

Bm̄,sn̄(u)
≤ c(α̃0(s) + O(δ)). (5.59)

To bound the second quotient in (5.55), we use again Theorem 4.3 and (2.8) to obtain∫
Ω

m̄|u+|p
Bmε,snε

(u)
≤

∫
Ω

mε|u+|p
Bmε,snε

(u)
+ cε

‖|u+|p‖W1,1(Ω)

Bmε,snε
(u)

≤
∫
Ω

mε|u+|p
Bmε,snε

(u)
+ cε

‖|u+|p‖W1,1(Ω)

Bm̄,sn̄(u)
,

(5.60)

and similarly ∫
Ω

sn̄|u−|p
Bmε,snε

(u)
≤

∫
Ω

snε|u+|p
Bmε,snε

(u)
+ scε

‖|u−|p‖W1,1(Ω)

Bm̄,sn̄(u)
. (5.61)

Now, from equations (5.60),(5.61) together with (5.58) and (5.59) we get

Bm̄,sn̄(u)
Bmε,snε

(u)
=

∫
Ω

m̄|u+|p + ∫
Ω

sn̄|u−|p
Bmε,snε

(u)
≤ 1 + (1 + s)cε(α̃0(s) + O(δ)). (5.62)

Then combining (5.55),(5.58),(5.59) and (5.62) we find that

α̃ε(s) ≤ ((α̃0(s) + O(δ)) + cε(α̃0(s) + O(δ))) (1 + (1 + s)cε(α̃0(s) + O(δ))) .
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Letting δ→ 0 we get
α̃ε(s) − α̃0(s) ≤ cε(α̃2

0(1 + s) + α̃0). (5.63)

In a similar way, interchanging the roles of α̃0 and α̃ε, we obtain

α̃0(s) − α̃ε(s) ≤ cε(α̃2
ε(1 + s) + α̃ε). (5.64)

From (5.63) and (5.64) we arrive at

|α̃0(s) − α̃ε(s)| ≤ cε(1 + s) max{α̃0(s)2, α̃ε(s)2}.
Now, using Lemma 3.1,

|αε(s) − α0(s)| ≤ c(1 + s)τ(s)2ε,

where c is a constant independent of ε and s, and τ(s) is given by (3.22). Here, Lemma 3.1 holds in
the Neumann case, but now we have

α(s) ≤ min{m−1
− , n−1

− }μ2τ(s), β(s) ≤ min{m−1
− , n−1

− }μ2sτ(s)

where μ2 is the second eigenvalue of the p−Laplacian equation on Ω with Neumann boundary
conditions. From the convergence of αε and (1.5) there follow the convergence of βε and of the
whole curve.

Proof. [Proof of Theorem 4.1] Since Theorem 3.2 holds for functions belonging to W1,p(Ω) with Ω
being any bounded domain in RN , this proof is analogous to that of Theorem 2.1.
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[14] P. Drábek, Solvability and bifurcations of nonlinear equations, Pitman Research Notes in Mathematics
Series, vol. 264, Longman Scientific & Technical, Harlow, 1992.
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